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\ ABSTRACT

A\

Several aspects of the question of the determination of the phase
of a wavefield from the knowledge of its intensity in the aperture j
plane and focal plane of a thin lens are investigated. The role of
diffraction from the lens aperture is studied. 1t is shown that for

an astigmatic Gaussian beam this method of phase retrieval is highly

nonunique if the beawwidth in the aperture plane is much smaller than
the radius of the aperture. For several test cases, it is shown that
if the beamwidth is not small compared to the radius of the aperture
the above-mentioned nonuniqueness is removed (except for the well-
known twin solution ambiguity). The twin solution is discussed and

a method for eliminating it is proposed.
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I. INTRODUCTION

The question of phase retrieval, that is, of the determination of
the phase of an incoming optical signal, is an extremely important
problem, one which can be approached in several different ways.

One of the most practical methods of phase retrieval is to
attempt to deduce the phase of theAwavefield from a knowledge of the
intensity of the field in two different planes: the aperture plane
and focal plane of a thin lens.

In this report we will investigate several aspects of the unique-
ness of the phase retrieval performed by this method, that is, whether
or not the method allows one to uniquely determine the phase of the
incoming wavefield.

The method of phase retrieval under consideration can be described
more precisely in the following way. Let the field in the aperture

plane of the lens (which we take to be the plane z = 0) be written as

—iwt]

V(pyt) = Re [Ua(Zo) e ,

>

)

Re [|U_(5y)] e (1.1)

where 30 = (xo,yo) is the two-dimensioral position vector in the
aperture plane, Ua(go) is the complex amplitude of the field in that
plane, w is the temporal frequency of the field and Re denotes that

the real part is to be taken. The method in question strives to de-
termine the phase kW(go) from the knowledge of the aperture plane
intensity, |ua(30n2, and the focal plane intensity, |uf(3)|2. o = (x,y)

is the position vector in the focal plane. From here on |U| will be




referred to as the amplitude of the field.

Numerical experiments which successfully retrieve the phase from
aperture plane and focal plane intensities have been performed. Gon-
salves1 treated the one-dimensional focusing problem. He found,
for several test cases, that his algorithm always converged to either
the correct phase or its "twin" (the twin solution will be discussed
in Section V). Southwell2 treated the two-dimensional problem for the
case of uniform aperture plane intensity, |Ua(36ﬂ 2. 1, and a phase
described by means of the nine Zernike polynomials corresponding to
tilt, defocus, astigmatism and coma. He found, for several test cases,
that his algorithm produced the correct phase.

Neither of these papers made a definitive statement about the
general problem of uniqueness, that is, about whether or not there
is only one possible phase function consistent with the two known in~
tensities. Until this point is clarified, one cannot be confident that
the phase one calculates is the one occuring physically. In the one-
dimensional problem, some interesting results on the question of

uniqueness have been obtained.3'4’5’6

However, the two-dimensional
problem is not a straight-forward extension, because physical wave-
functions cannot, in general, be subjected to the method of separation
of variables and furthermore lemnses have circular apertures, not
square ones, Indeed, recently the question of uniqueness for the
problem we have described above has been debated in the literature.7’8
More recently two proofs of uniqueness have been obtained. Foley

and Butt89 have shown that if the wavefield intensity across the lens

is uniform and the phase is represented by means of the nine lowest

e e B M G e AR M AP S 1 s il & L ‘ SO T S




order Zernike polynomials, that the phase can be determined uniquely
(except for the well-known twin sclution ambiguity) from its aperture
plane and focal plane intensities. Foley10 has extended this proof to
include aperture plane intensities which are Gaussijan.

The purpose of this report is to investigate two aspects of the
uniqueness question. First, using a specific wavefield (an astigmatic
Gaussian beam), we will investigate the role that diffraction plays in
the question of uniqueness. (By "diffraction" we mean that due to the
finite size of the lens, not diffraction due to unobstructed propagation
in free space). It will be shown that this diffraction is responsible
for the uniqueness which arises. Secondly, we will discuss the twin

solution ambiguity and propose a method for eliminating it.

m———————
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I1. PHASE RETRIEVAL FROM INTENSITY MEASUREMENTS

In this section the particular method of phase retrieval which we
are considering, namely the determination of the phase of an incoming
complex amplitude wavefield from the knowledge of the intensities in
the aperture plane and focal plane of a thin lens, will be described

in a more precise mathematical fashion.

2.1 Precise Mathematical Statement of the Uniqueness Problem

Let the wavefield

t

v,(F,t) = Re {uiG)e‘i‘” b, (2.1)

where T = (x,y,2), be traveling towards positive values of z. (From
here on the e_iwt will be omitted, since the field at any position in
space will have this form of time dependence. We will now deal with

complex amplitudes only and refer to them as the fields.) Furthermore

let this field be incident upon a thin lens of focal length f and

radius L, which is located at z 0 and surrounded by a stop. In this
plane the incident field can be written in terms of its modulus and

phase as
> > ikW(pq)
- p
Ui (pgs® = |U (5, 0) [ 007, (2.2)

where 30 = two dimensional position vector in the plane z = 0, k = w/c
and W(go) is a real functiomn of 30. See Figure 2.1. The aperture plane

field (which includes the effect of the stop) is

U, () = U;(5:0) cire (pg/L) (2.3)




Thin Lens Geometry.

Figure 2.1.
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where p = lpol and
1, Pg 2 L
circ (pO/L) = . (2.4)
0, po > L

The field, uf(S), in the focal plane can be found by using

diffraction theory. 1t turns out to be proportional to the Fourier

transform of the aperture plane fieldll,

2
ikf i 2f
U(8) = ndlblly’ (@/2f) (2.5)
f irf a ’ '

where A is the wavelength of the light and

. s -zni(b’/xf)-a'o )
B @) =_ffu Gy e dp, (2.6)

It follows from Eq. (2.5) that the intensity distribution in the focal

plane is
e > 2
I.(e) = |u (0%,
1 N > 2
;E;E an(o/Xf)l . (2.7)

The phase retrieval problem can be stated as: given the intensity
distribution in the focal plane and aperture plane of a lens, can we
then uniquely determine the phase of the aperture plame field? Or in
other words, is it possible for two (or more) aperture plane fields with

equal aperture plane intensities but different phases, e.g.,

1k, ()
> > A0
Ualeg) = (U, ] e ,

i sk it =



7
+
ikw (p )
> _ -+ B0 .
UGy = (U, e
to produce equal focal plane intensities? The equality of the
aperture plane intensities demands that
> 2 - - 2 >
[u_ (o)1 = IUaB(po)l , for all p, . (2.8)
The equality of the focal plane intensities demands that
~ > 2 Y -+ 2 -
(U /AE) |7 = [U_gGo/Af)| © , for all o. (2.9)
2.2 The Twin Solution
It is well-knownl’s’12 that if the aperture plane amplitude is
symmetric with respect to inversion, i.e.,
-»> -> >
IUa(-po)l = U, (| , for all o, (2.10)

then there are at least two fields which will have the same intensities
in both the aperture plane and focal plane. They are the field itself,

-
ikwA(Do)

UGB = [0, Gl e (2.11)

and its "twin",
>
-ikW, (-p.)
> _ > A 0
U gy = |Ua(p0)| e . (2.12)
These two fields have the same aperture plane intensities by defi-

nition. Furthermore, as we will shown in Section V,

ﬁaB(S/Af) = [ﬁaA(S/Af)] * (2.13)




hence, from Eq. (2.7), we see that they have the same focal plane in-
tensities as well. In Section V we will discuss the twin solution
further. In Sections III and IV we must keep in mind that, since we

will be dealing with fields which obey Eq. (2.10), the twin solution

is always a possibility.




III. THE ROLE OF DIFFRACTION BY LENS APERTURE IN THE QUESTION OF
UNIQUENESS. PART I: RADIUS OF BEAM RADIUS OF LENS
Devaney8 in his paper "On the uniqueness question in the problem

of phase retrieval from intensity measurements" suggested that although

the phase retrieval problem that we are discussing was shown by Robinson7

to be nonunique in the limit of geometric optics, it does however appear
to possess a unique solution (except for the twin solution) within the
framework of diffraction theory. Indeed, uniqueness (except for the
twin solution) for the problem we are considering has been proven by
Foley and Buttsg.

In this and the next section we will investigate the role of the
diffraction caused by the lens aperture in the question of uniqueness.
We will study a particular type of incident field, namely an astigmatic
Gaussian beam. In this section we will assume that L, the radius of
the lens, is much larger than the radius of the incident Gaussian beam,
so that there is no diffraction due to the lens aperture. We will find
that this leads to a great deal of nonuniqueness, i.e., several
beams with different phases can have the same intensity in both the
aperture and focal planes. In the next section we will treat the case
where the beam radius is not negligible compared to L and we will see

that, except for the twin solution, all the nonuniqueness is removed.

3.1 Astigmatic Gaussian Beams

Let us now investigate the case where the incident fields is an

astigmatic Gaussian beam. The incident field can be written as

2
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->
: U, (.,0) =~ AGR) Hei (e (3.1)

| 1P’ Po’ € ’ y
where
2.2
-p, /W
> ’g_ 1 o ™o

is a normalized Gaussian amplitude, and the phase function W(Bb) can

0 ‘ l .l .| 0

The a.'s are expansion coefficients and the Z,'s are a set of modified

J
Zernike polynomialsl3:
zl<36/L) = x/L , (3.4a)
2,(,/L) = 2(p0/L)2 -1, (3.4¢)
2, B = (x )2 - (v /)2 (3.4d)
4'Po 0 0 ’ :
25(5o/L) = 2xy/L)(y,/L) - (3.4e)

Each of these terms has a meéningful physical interpretation. The
first two terms represent, respectively, the tilt in the x and y directioms.
The third term corresponds to defocus and the last two terms represent,

respectively, 0° and 45°—astigmatism.

Substituting Eq. (3.2), (3.3), and (3.4) into Eq. (3.1), we then

have ﬁ
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2, 2 2
-p, /W a x a,y a,(2p.” - 1)
> =12 L 00 170 2°0 3'70
Ui(DO,O) j: W e exp{ik[ Tt gt 5
L
2 2
a(x."-y. ) 2a.x.y
+ 2 00 4 %00]} . (3.5)
L L

Furthermore for the sake of mathematical convenience we can drop the
linear terms in Eq. (3.5), since their only effect would be to shift
the focal plane field distribution by x = —alf/L and y = -azf/L.

Eq. (3.5) can then be written as
2, 2
- /W
re <121 0" 0 2 2 2 2
Uy (pge0) Jv W, € expliklaz(py”™ - % L7) + o, (x,"- y,")

+ 2u5x0y0 1}, (3.6)
where
2
ay = 233/L . (3.7a)
a, = a, /L%, (3.7b)
a5 = aS/L2 . (3.7¢)

Throughout the rest of this report our incident field will be of
the form of (3.6). Note that @, measures the defocus, o, measures the
0° astigmatism and a, measures the 45° astigmatism. The tilt terms
(a1 and az) are needed only if the focal plane intensity pattern is

not centered about x =y = 0.

3.2 Propagation of an Astigmatic Gaussian Beam Through a Thin Lens

(Infinite Aperture)

3.2.1 Astigmatic Gaussian Beam with a. = 0
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Let us first consider the case where aS = 0, since as # 0 can be

reduced to the same form (this will be shown in the next subsection).

The field on the left hand side of the lens can then be written as

2, 2 2 2
> 71 P M ik“3("02 - %1% tha, (x5" - y4)
Ui(po,O) = Ew—' e e e .
0
2
P I e tkx 2128 1y /285
=l —w—— ¢ e 0e 0, (3.8
0
where

1/Rx0 = 2(u3 + ua) . (3.9a)
1/Ryo - 2(a; - 5, . (3.9b)

The effect of the lens is to change the wavefront curvature by an
amount —I/f.14 Therefore the field on the right hand side of the lens

is

2
-ikp “/2f
+ _+ 0
U(po.O ) Ua(po) e R
2
-% ika,L 2 2 2,. +
Te 3 . e /W0 ikxo /2Rxo
p w e E
0
2 2 +
-y02/w0 tky“/2Ryg
X e e N (3.10)
where
/RY = mC -1/t (3.11a)
X X ’ *
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+ -

/R = 1/RT - 1/f . (3.11b)
Yo Yo

In Eq. (3.10) we have used the fact that ua(Eo) = Ui(go,O) for the
case of an infinite aperture. If we now use the complex radius of

curvature notationls, Eq. (3.18) can be rewritten as

2
b Ze‘*‘ tkagL 1kx02/2qu iky02/2qyo
U(pO,O ) = |=F————e e . (3.12)
T Wo
where
+ 2
1/q = 1/R. + 1iA/7W_ ~ , (3.13a)
b4 x 0
0 0 :
!
+ 2
1/q = 1/R + ir/aW . (3.13b)
Yo Yo 0

3.2.2 Beam propagation (z > 0)

We are now ready to calculate the field in any plane z = constant

> 0. We will use the Fresnel diffraction integral,16
> > 2
ikz ik(p-p.) /22
> _e + 4+ 0 2
U(p.2) = 35— I UG, 00)e ey
ikz 1k 2/2z 2 >
e e .+ ikpo /2z -ikp-po/z 2
= o j:fU(po,O ) e e %y (3.14).
15,17

It follows in a straightforward manner, after substituting (3.12)

into (3.14), that the resulting field is

19(2) -xz/wxz(z) kIR (2) -y* /W 202)  iky2/2R (2)
V@, 2) |2 e e e e y e b
py2z T Wx(z) Wy(z)

(3.15)

where

W (2) =W, J(l + z/R;O)Z + (z/zR)2 . (3.16a)
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W (2) = ¥y \[(1 + z/R;o)z + (z/zR)2 , (3.16b)
(a+ z/R: )2 + (z/zR)2
R (2) = 9 , (3.17a)
X + + 2
AR+ 2/E) + (alz)
a+z:t )%+ (22 )2
Yo R
R (2) = T . 5 , (3.17b)
(I/Ryo)(l + Z/Ryo) + (z/zR)
2
zp = WA, (3.18)
2
Vv(z) = k(z —¥a3L) -5y _(2) -wym R (3.19)
and
) h/nwoz )
¥, (2) = tan . , (3.20a)
(1/R. + 1/2)
L x0 .
. rx/nwoz 1
¢_(z) = tan + (3.20b)
y art +1/2)
L y0 .
The intensity is therefore
1G,2) = U (az) UG.2)
2 Py - R
_2e e Y . (3.21)
w

wx(Z) Wy(Z)

From Eq. (3.21), we see that for any particular z, the isophotes (con-

tours of equal intensities) are specified by

x2lwx2(z) + yzlwyz(z) = constant,
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which are ellipses which can degenerate into circles 1if Wx(z) = Wy(z).

e

Circular isophotes (if they occur) are observed at only one particular
value of z > 0. This circular image is called the circle of least

confusion.

3.2.3 Propagation of a General Astigmatic Gaussian Beam

Let us now investigate the case where a,. is not generally zero.

5
(We will be following formalism similar to that developed by Cook.ls)

The field on the left side of the lens can then be written as

2 2 > :
- W.~ ikW(p.) ‘
> .’3_1_ Po Mo 0
Uy (0g:0) = |7 W e e , (3.22)
where
+ 2 2 2 2
W(pg) = az(p, LL) + a, (%" = ¥4 ) + 205xy, ,  (3.23) .

As in Sec. 3.2.1 we can now write the field on the right hand

side of the lens as 2
-ikp . /2f
> 4+ > 0
U(po,O ) Ua(po) e

2, 2 2
51 Pg My ke /2t 1kW(2>’0)
GEW— e e e . (3'24)
0

Using the Fresnel diffraction integral, the field for z > 0 is ‘

2 2
ikz ikp“/2z ikp . /22
+ -
U(p,2) = —— i,\z f}‘U(oo,O e 0 exp [—ik(xxo : yyo)]dxodyo .

(3.25)




i6

Substitution of Eq. (3.24) into (3.25) yields

2 2, 2 2 2
N ikz iko/2z 3 ~po MMy -ike, /2 ikp /22 1kW(B’O)
U(p,Z) = ;

o0
iz ﬁaly'e e e e

x exp [:%5 (xxo + yyo)] dxody0 . (3.26)
Zikusxoyo

The term e makes this integral nonseparable and different
from the integral we encountered earlier. Thus, we have to go to a
rotated coordinate system in which this term vanishes in order to make
the integral separable.

Let us now rotate the aperture plame coordinates and the observation
plane coordinates counterclockwise by an angle 6 about the z-axis. In
order to do this we now define a new aperture plane coordinates, (;b,§b),

and a new observation planes coordinates, (;};}, according to the trans-

formation equations,

X, = xocose + yosine s

= -x sind + yocose . (3.27)

Yo 0

and

xcosf + ysing .

®l
"

-xsiné + ycos6 . (3.28)

< |
n

The old coordinates are then given in terms of the new coordinates
according to

xO = xocose - yosine s

Yo = %,8in6 + ;bcose R (3.29)
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and

X = xcosd - ;éine ,

y = xsind + ycos . (3.30)

It is a straightforward matter to show18 that if & is chosen accord-

ing to

cot29 = a4/35 , 0 <20 <nw , (3.31)

2iku5x0yo

then in the rotated frame the term e is eliminated. 1Indeed,

in the rotated frame the field specified by (3.26) transforms to

2 - — -
L ez 1 /2 o =p tmE - P 1?2
U(x,y,2) = —— E ;,—-_E)’ e e e

0

x exXp

. -2 .2 - -2 =2 -ik,— — - =
1k[é3(po L7) + a4(xo> =¥y )] $ exp{—;—(xxo + yyo)]dxody0 s

ik(z - % a3L2) K52/ 22

-2 - 2 L 2
ikxo /2q§0 eikyo /quo elkpo /22

=]2e € e
w iAWoz @
x exp —ik (X, + 77| dx.dy
0 0 07’p’
(3.32)
where
5= [ +v (3.33a)
- [Tz 2
po = xo + yO ) (3'33b)
a, = 0,c0820 + asin26 (3.34)
+ 2
1/g- = }/R_ + i)/ , (3.35a)
X, X, 0
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+ 2
1/q—~ = 1/R— + ii/mW . (3.35b)
y y 0
V] 0
+ _
1/R— = 2(a, +@,) - 1/f , (3.36a)
xo 3 4
+ _
1/R. = 2(a, ~@,) - 1/f . (3.36b)
y0 3 4

Eq. (3.32) has the same form as Eq. (3.14) with Eq. (3.12) substituted

into it. It then follows that

e e e e

’Wi(Z) ’Wy(Z)

B =~ 1(2) T (2) R/ (2) TN (2) 157/ (2)
U(%,5,2) = E e * * d il

(3.37)
where
w-(2) =W, j(l + z/lg{;)z + (z/zR)z , (3.38a)
H(2) = W ﬂl + z/Ry-;)z + (2lz)? (3.38b)
1+ z/R}_{:)2 + (2/25)*
59 z/R)_‘;)/R}_(; + (2/2d) ’ 335
1+ z/%;)z * (2/2)?
R’)"r(Z) ) (1 + z/R—)-,:;)/R;; + (z/zi) ’ (3:390)
V@) = kG - Bag?) - e - N (3.40)
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N A/nwo2
wi(z) = tan T , (3.41a)
1/R§ + 1/z J
- 0
-1 [ A/nwoz ]
Y—(z) = tan ry (3.41b)
Y 1/R. + 1/z
L Yo J
The intensity in the rotated frame is then given by,
-2, 2 2
-2x /Wﬁ (2) -2?2/W.y /(2z)
—— — 2
I(X,5,2) = =% = . (3.42)

W;(Z) W—};(Z)

It follows then that for any particular z, the isophotes are generally
ellipses (Figure 3.1) in a rotated plane. It also follows that circular
isophotes (if they occur) are observed at only one particular value of

z > 0.

3.3 Nonuniqueness in the Case of an Infinite Aperture

The uniqueness question asks: can two (or more) astigmatic beams

with equal aperture plane intensities but different phases, e.g.,

2 2 2 2 2
’ - ik i _ .
U (3 ) = 2 1 e pO /wo e 0390 elka[.(xo yo ) elka52xoy0
aA'’ 0 ™ wO

- i _ .
U@y = 2L 0 Mo 159 B (xg” = g ik 2xgy,
aB po T wo ,

generate identical focal plane intensities? It follows from Eq. (3.42)
that the two fields will have the same focal plane intensities if their

x and y beam widths are equal in the focal plane,




Figure 3.1. Elliptical isophotes for cases with ag # 0.

20
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whey = wlo (3.43)
y
whoy =wls) (3.44)
y y .
and the rotation angle of the focal plane isophotes are equal,
eh=0% | (3.45)
By using Eq. (3.38), (3.36) and (3.34), Eq. (3.43) - (3.45) can be

written as

Joay v 3%+ rzp? = sy + BT A/’ (346) s
Jotoy -5+ rzp? = sy -8 sz, G

% = B (3.48)

%5 Bs

Tables, 1, 2, and 3 list all the possible solutions to this set

of equations. Table 3.1 gives all the possibilities for the case of

a,

and Table 3.3 gives all the possibilities for the case where both «

= 0, Table 3.2 gives all the possibilities for the case of ag = 0

3

and Ez are not equal to zero.
It is apparent from Table 3.1 that in this case there are an
infinite number of fields which will duplicate the intensity created

by the field ag # 0, a, = ag = 0, since we are free to choose 84 to

be anything, as long as BS = + ’a32 - 842 . The same is true for some

of the solutions in Table 3.2. This occurence of an infinite number




of solutions is caused by the fact that all the fields created by the
solutions in Table 3.1 and Table 3.2 produce circular isophotes (see
Appendix A) in the focal plane. Hence, since the aperture plane field
is also circularly symmetric any rotation of this incident field (which
corresponds to a different 84 and therefore a different BS) will leave
the focal plane field unchanged as long as 84 and 65 are related in

the manner stated above. Thus, in practice, if you have an astigmatic
beam incident upon a thin lens where L>>W0, and you see circular iso-
photes in the aperture plane and focal plane there is no hope of
determining the phase of the incident field.

Table 3.3 corresponds to fields which create elliptical isophotes
in the focal plane. Here there are only four possible solutions: two
distinct solutions, each with its own "twin".

In order to get a physical feel for these four different solutions

we set a. = 0 and look at the propagation of these four beams. The four

5
incident fields are listed in Table 3.4, along with their x and y
curvatures. From the table we see that these incident fields all have
the same magnitudes for their x curvature and their y curvature; the
differences among the solutions is in the signs of the curvatures.

The beam widths in the x direction and y direction, wx(z) and wy(z),

are plotted as a function of z in Figures 3.2 - 3.5 for z values near

the focal plane. The following values were used: Wo JE cm.,

A = 63288, £ = 10 cm., ay = .375X, a, = .1875) and o

4 5

since ag = 0, 6 = 0 and therefore there is no need to use the rotated

0. Note:

coordinate frame. Each of the four beams is quite distinct, except at

the point z = £ = 10 cm. Here the four beams have exactly the same
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wx and Wy and hence, the same intensity (6 = 0 for all four beams). Thus
in practice, if you have an astigmatic beam incident upon a thin lens,
where L>>wo, and you see circular isophotes in the aperture plane and
elliptical isophotes in the focal plane, you cannot specify which one
of the four beams is the one occuring physically.

Indeed, since the second solution is the twin of the first solution,
we could not discern between them even if the aperture was smaller (as
long as the aperture is circular). Likewise with the third and fourth

solutions. If the aperture is small, we can discern between these two

groups of solutions, however. This will be shown in the next section.
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- - — - ——f b o r——-———————————*———-—{——— - — g o
@ 0 0 0 Bl -fa? -8
ST A N S — |44 Y03 4
%3 0 0 ag 0 0
---------- #-———-—-——————-——---——b———q-——-—-——————--4
u&, 0 0 - 0q 0 0
Table 3.1 All the possible solutions for
the case with ay = 0.
%3 | 9 ) ) By B
Ol 0 %l Ba| Nog-Bag
0 a 0 0 - -
B W 730 W A | Bg | Nog - Bg
0 a 0 0
- ---Q-TL———-—_ -————-—(—!4 —————— }--—.--h__-._—_——-o- ——————
0 @, 0 -a 0 0

__9_:~_9__j_-fé__-___-_-fﬁ ________ 9"?“""'9 ______ )
0 0 ag -qs 0 )

L T T o . 8y Moy +og - 8

O S - D/ EANC R A
0 a o ey + ag 0 0

———d_ D LN S R
0 Ay 95 —;az + ag 0 _ 0

Table 3.2 All possible solutions for
an = 0
3 .
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3] % |% 3 4 5
S M X S O A U I S
aq | ay |og -Gg % ~%5

Table 3.3 All solutions for o, ¥0 and

ag # 0.
Field in Aperture Plane X Y
Curvature Curvature
2 2
ik(a,+ta,)x~ ik(an-a,)y 1 1
AGe 2 470 37470 atagEey |Beg-a,
—-—-———————————————————-——— ————— o e . - - —— T- —————————————
. -ik(agray)x2 -ik(ag-a)ya| -1 -1
A(po)e e ' 2(03+a4‘5 2(a3-a4)
_______________________________ ) Y B
1k(ao*a,)x2 -ik(a,-a,)y>
AGS)e 3" "4 %0 37%’Yq 1 -1
0 2(a3+u4) 2ﬁ3-a4)
——————————————————————————————— ur—————————J-————————————-—
. -ik(agta,)x2 ik(ag-a,)ya -1 1
A(po)e e ) 2(a3+a4) 2(a3—a4§

Table 3.4. Field and curvature in the x and y direction
in the aperture plane for solutions that
generate elliptical isoghotes in the focal
plane. N 21 ¢ /w02

A(po)-;yqf

Lo ——i :
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Figure 3.4. Propagation of beam width in the x and y direction for
solution 3 of Table 3.3. a, = .375), «
Wy =JZ cm, £ =10 cm and A”= 6326K.

= .18754, o, = 0,
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solution 4 of Table 3.3. a, = .37, a, = .18754, ag = 0,
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IV. THE ROLE OF DIFFRACTION BY LENS APERTURE IN THE QUESTION OF

UNIQUENESS. PART II: RADIUS OF BEAM > RADIUS OF LENS

In the previous section we have seen the nonuniqueness which
arises when diffraction from the lens aperture plays no role in the
propagation of the astigmatic Gaussian beam through a thin lens. In
the present section we are going to look at what happens to that non-
uniqueness as we decrease the size of the aperture such that diffraction
from the aperture now plays an important role.

Figure 4.1 depicts the physical situation we are considering in
this section. An astigmatic Gaussian beam is incident upon a thin lens
of radius L surrounded by a circular aperture of variable radius, sL,
where 0 < s < 1.

The effective radius of the lens is then s*L. The resultant
focal plane intensities generated by incident fields which generated
identical focal plane intensities for the case W.<<L will be studied

0

for various values of s.

>
4.1 Calculation of If(p)

The incident field we will be using in this section is the same

as that of Section III,

2 2
X y
2 2 2 0 0 2
- W.  ika_ 2 L) -1 ika, (—— - —
Lo [z TPo MMy tkay 2(ep/L) 7 T T tkagBegy/t
U,(p,0) =|=— e e e e
i W
0
2
-ika,L°/2 2 2 2 2 2
- ik - i
7 e 3 °o /w0 ika3p0 04(x0 Yo ) 1ka52x0y0
== — e e e e ,
™ WO

(4.1)
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Thin Lens Geometry.

Figure 4.1.
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where

a, = 2a /L2 (4.2)

3 3 ’ *
o, = a,/L® (4.3)

4 4 ’ *
- a /12 (4.4
ag = ag . .4)

The aperture plane field is therefore,

. 2 2 2 2 2 2
. [z -ika,L /2 g /w0 ika3p0 ika4(xO =Y ) ikaSZxoyo
U (ps) == e e e e e
a'’o T WO

x cire (po/sL) . (4.5)

Looking at Eq. (2.5) and (2.6) we see that the focal plane intensity

is given by

L@ = [u®|?
1 - 2
v LRCIZS TR (4.6)
where
o s C21LE/AD D
¥.@nn = Gpe O d%, . 4.7

Defining the spatial frequencies according to

>

£ = o/Af (4.8)

we see that in order to calculate If(g),

_.a
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) e d L (4.9)

the two-dimensional spatial Fourier transform of Ua(go), must be evaluated.
Since Eq. (4.9), with Eq. (4.5) substituted in, is not amenable to ana-
lytical evaluation we must evaluate it numerically.

The evaluation of ﬁa(z), as given in Eq. (4.9), was performed by
using a fast Fourier transform (FFT) algorithm to do the discrete Fourier
transform (DFT) of ua(Zo). The particular subroutine used was subroutine
FFT developed by Posey19 in 1969 at Mississippi State University. This
subroutine uses the FFT algorithm of Cooley and Tukeyzo. For further
details on the application of this subroutine to the problem we are con-

sidering, see reference 21.

4.2 Uniqueness in the Phase Retrieval Problem

We are now ready to look at the effect of the size of the aperture
on the solutions of the previous section. Throughout this section we
are going to look at astigmatic Gaussian beams of wavelength ) = 63282,
passing through a thin lens of radius 4 cm. and focal length 10 cm. The
beamwidth in the aperture plane is taken to be wo = JE cm.

Except for Figure 4.2 all the intensities computed in this

section have as their input the function Ua(go) sampled at the points

-
Po < (-8 cm. + mA, - 8 cm. + nA) >

where

m=0,1,2,...,M-1

n=0,1,2,...,N-1
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and A = ,125 em., M = N = 128. Also, except for Figure 4.2, all the
focal plane intensities plotted out in this section correspond to the

following focal plane points:
o = (-2 o:ln_1 + £ 22 cmn1 + iL) Af
e MA® NA ’

where M, N and A are as specified above and

p=20,1,2,...,64

=0,1,2,...,64

Qa
|

4.2.1 Effect of Diffraction on a Solution with Circular Isophotes

in the Focal Plane

In this subsection we compare the focal plane intensities generated
by two fields which, according to Table 3.2, have different phases but

produce the same focal plane intensities if w0<<L. In particular we

compare the focal plane intensities generated by

Field A: a, = .75, ay = ag

ft

Field B: 83 = .75, 84 65 =0

for two different stop values.
Figures 4.2a and 4.2b show the focal plane intensities generated

by Field A and Field B, respectively, for s = 1. 1In this case wo = JE-

cm and sL = 4 cm, so W_ is a good deal less than sL and the two fields

0

create the same focal plane intensity patterns. (Note: In these two

figures the input function was sampled at M = N = 128 and Ao = .0625.
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The focal plane intensities are plotted over the region -4Af < x < 4Af,
-4xf < y < 4Af.)

Figures 4.3a and 4.3b show the focal plane intensities generated
by Field A and Field B, respectively, when the stop is reduced to 4.
The two focal plane intensities are now quite different from each other.
Indeed, Field A no longer creates a circularly symmetric intemnsity
pattern.

Clearly, the nonuniqueness which was present when the beam was

much smaller than the lens aperture is eliminated when the aperture
plays a significant role. We have found this to be the case for each
of several examples taken from Table 3.1 and 3.2 and expect it to be
true in general except, of course, for the case where Field B is the
twin of Field A. 1t will be shown in the next subsection, however,
that in practice there exists a limit on how small the stop can be

made in order to demonstrate this uniqueness.

4.4.2 Effect of Diffraction on a Solution with Elliptical Isophotes

In this subsection we compare the focal plane intensities generated
by two fields, which, according to Table 3.3, have different phases but
produce the same focal plane intensities if W0<<L. In particular we

compare the focal plane intensities generated by

Field A: .3752,

.18751,

!
o

a3
Field B: B,

0.4'—' 0.5-

.18753, B, = .375), Bg

[}
o

for several different stop values. Similar results hold true for cases

where ag # 0 and Bs # 0, except in a rotated frame.
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Figures 4.4a and 4.4b show the focal plane intensities generated
by Field A and Field B, respectively, for s = 1. 1In this case WO = Jf cm

and sL = 4 cm, so W, is a good deal less than sL and the two fields pro-

0
duce the same focal plane intensities.

Figures 4.5, 4.6 and 4.7 each compare the focal plane intensities
generated by the two fields. The stop values for the three sets of
figures are s = 3/8, 1}, X respectively. Clearly, due to the diffraction
from the aperture, Field A and Field B no longer produce the same intensity
pattern and the nonuniqueness which was evident in Figure 4.4 has been
elimipated.

In Figure 4.8 the stop has been decreased even further, to s = 1/8.
Here the two fields again genmerate the same focal plane intensity
patterns, so there is some limit upon how small we can make the stop
and still demonstrate the uniqueness, Physically, what is happening
in this case is that the aberration and the stop are so small that the
aperture plane fields for Field A and Field B are almost identical.

It should be noted at this point that decreasing the sign of
the stop will never allow us to distinguish between two fields which are
twins of each other, e.g., the first and second solution in Table 3 or
the third and fourth solution of that table. More will be said in the

next section about the twin solution and a method for eliminating it

will be suggested.
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stop = k.
a) ay = L3751, a, = .18752, ag = 0

b) B3 = .18757, B, = .375, B, = O {

Figure 4.7. Focal plane intensi ?
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V. SUMMARY AND TWIN SOLUTION

In this section the "twin solution” ambiguity will be discussed and
a method to eliminate it will be proposed. As we saw in Section III, the
twin solution is always possible for the types of aperture plane fields
we have used so far. 1In fact, the twin solution is always possible for

any aperture plane field that has inversion symmetry.

5.1 Summary and Twin Solution

Phase retrieval problems for cases where the incident field is in
the form of an astigmatic Gaussian beam have been studied. It was found
that for cases where the radius of the beam is much smaller than the
radius of the lens, phase retrieval is nonunique.

More precisely, for cases where the aperture plane and focal
plane intensities are circularly symmetric, there exists an infinite
number of solutions to the phase retrieval problem if the focal plane
intensities have circular isophotes. If they have elliptical isophotes,
then there are only four possible solutions to the problem, two
distinctly different solutions, each with its own "twin".

For the numerical examples we did, letting the lens be surrounded
by a circular aperture of significant radius (in comparison with the
beam radius) will then reduce the nonuniqueness to only the twin solution.

We shall now discuss the twin solution further. Let us now
consider the incident field

1K (5 )

uiA(KO,O) - |ui(30,0)| e (5.1)

and its twin
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ikW(-P )
> N > - o
The corresponding aperture plane fields are o
-+ > >
o
- -> -»> E
UaB(Do) = UiB(pO’o)P(pO) s (5.4)
where P(;O) represents the pupil functiom.
It follows from Eqs. (5.1) - (5.4) that
+
ikW(p,.)
-»> > 0
Ualpg) = 10, G| e , (5.5)
=
-ikW(-p,)
> > 0
Upg) = (U, (o) e , (5.6)
where L
-> > >
U, (o) = U (0g:00 | Plog) - (5.7)
Theorem
If
> > >
[ (pgd | = |U, (o) | 5 for all o, (5.8)
then
*
V@ =[?IaA(E)] , for all Z. (5.9)
Proof:
It follows from Eqs. (5.5) and (5.6) and the definition of the
Fourier transform that !
H
)
I
¢
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> > >
RGN ALRCNY R a% (5.10)
aA < 173" 0 0’ i
-> > >
5. = Tv@al e-ikW(-pO)e—Z“iE.po a%. . (5.11)
aB dr a0 0
If we define K = -36, Eq. (5.11) can be rewritten as 1
> .
~ikW(n) 2wig-n
" > © -»> 2
Up(8) = [7|u (-n)|e e d*n . (5.12) ;
Using Eq. (5.8) in Eq. (5.12) yields
-ikW(n) 2wigen .2
-> _ -> d n
Y, = v @] e e ,
*
- [ﬁaA(E)] : (5.13)
It follows from Egq. (2.7) that
- -
IfB(B) =1,() forallp . (5.14)
From Eqs. (5.7) and (5.8) we see that if
> >
and
P(-5y) = PGy (5.16)

then |ua(-30)| = an(;o)l and the twin solution will occur.

Note that all the incident fields discussed so far have circularly
symmetric intensities and thus satisfy Eq. (5.15). Also, the circular
aperture used satisfies Eq. (5.16). As a result, twin solution is
always a possibility in Section III and IV.

If the pupil function is not of the type in Eq. (5.16), then the
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theorem will not be applicable. Therefore, if we have a nonsymmetric
pupil, the twin solution might not occur. In the next section we will

look at one particular example where this 1is true.

5.2 An Example with Nonsymmetric Pupil

A numerical example of the same nature as in Section IV was
performed to determine the effect of a triangular aperture on the twin
= .75

solution of the incident astigmatic Gaussian beam with o, = 0, a

3 4
and ag = 0, A= 63288 and wo = Jz-cm. The aperture used was an equi-
lateral triangle inscribed into the lens aperture for a lens of radius

1 cm and focal length 10 cm.

The focal plane intensity for the corresponding aperture plane
field is computed in the same manner as in Subsection 4.4.2 and plotted
out in Figure 5.la together with the plot for its "twin" in Figure 5.1b.
It is evident from the plot that for this particular case, the use of
a nonsymmetric aperture eliminates the "twin solution" ambiguity. More

studies must be made before any general statement can be made about the

use of nonsymmetric aperture to eliminate the "twin solution".

lm . s at D ek AR
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APPENDIX A

CIRCULAR ISOPHOTES IN THE FOCAL PLANE FOR SOLUTIONS IN TABLE 3.1 AND

TABLE 3.2

The intensities in the focal plane for an astigmatic Gaussian

beam incident on a thin lens is given by Eq. (3.42) with z = f,

-Z:'(Z/w_xz(f) —zyz/w?z(f)
167,270 =+ — e A1)
X y
where
. £ 2., £ .2
W () = W ﬁ1+R_+) RN (A.22)
*o
) £ 2, £ .2
w0 < uy o)t ()t (A-2b)
Y

Looking at Eq. (A.l) we see that If(g) is circularly symmetric if

and only if
W_(f) = WS,-(f) . (A.3)

Substituting Eq. (3.36) into Eq. (A.2) we then have

W(£) = W Jz.(a3 +3)°% 4 Z—IR )2, (A.4)
Ho(E) = W j;% AL —2—1; )2 (A.5)

o e
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Thus, for cases with Ez = 0 (Table 3.1), or a; = 0 (Table 3.2) it follows

that
Hp(£) = () .

Hence, for these cases, the focal plane intensities are circularly symmetric.
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